Natural Language Processing (NLP) with R

Thursday 27th June, 2019

Typical NLP tasks

- Tokenization
- Sentence splitting
- Part-of-speech (POS) tagging
- Lemmatization
- Named entity recognition
- Parsing

▶ ...

- Constituency Parsing
- Dependency Parsing
- Sentiment analysis
- Coreference Resolution

Motivation

NNP POS NNP NNP VED PT NN CC U NN NNP NNP CC PRPS 1 Moody 's Investors Service inc said it Investors Service Service Investors Service Investors Service Service
INS. units.
2 About seven billion dlrs of securities is affected.
NNP POS VED NNP NNP NNP NNP NN
INNS IN INNE I
The company appears to have positioned its steel segment for a return to profit by late 1987, Moody 's
VEN Q added.
NNS VBD VBD DT IN NN TO NN IN NN S S Ratings lowered include those on USX is senior debt to BA-1 from BAA-3. S<

Figure: Part-of-speech (POS) tags for a text from the Reuters21578 corpus.

Penn Treebank part-of-speech tags (including punctuation)

Tag	Description	Example	Tag	Description	Example
CC	coordin. conjunction	and, but, or	SYM	symbol	+,%, &
CD	cardinal number	one, two	TO	"to"	to
DT	determiner	a, the	UH	interjection	ah, oops
EX	existential 'there'	there	VB	verb base form	eat
FW	foreign word	mea culpa	VBD	verb past tense	ate
IN	preposition/sub-conj	of, in, by	VBG	verb gerund	eating
JJ	adjective	yellow	VBN	verb past participle	eaten
JJR	adj., comparative	bigger	VBP	verb non-3sg pres	eat
JJS	adj., superlative	wildest	VBZ	verb 3sg pres	eats
LS	list item marker	1, 2, One	WDT	wh-determiner	which, that
MD	modal	can, should	WP	wh-pronoun	what, who
NN	noun, sing. or mass	llama	WP\$	possessive wh-	whose
NNS	noun, plural	llamas	WRB	wh-adverb	how, where
NNP	proper noun, sing.	IBM	\$	dollar sign	\$
NNPS	proper noun, plural	Carolinas	#	pound sign	#
PDT	predeterminer	all, both	"	left quote	' or ''
POS	possessive ending	's	"	right quote	' or "
PRP	personal pronoun	I, you, he	(left parenthesis	$[, (, \{, <$
PRP\$	possessive pronoun	your, one's)	right parenthesis],), $\}, >$
RB	adverb	quickly, never	,	comma	,
RBR	adverb, comparative	faster		sentence-final punc	.!?
RBS	adverb, superlative	fastest	:	mid-sentence punc	:;
RP	particle	up, off			

Figure 10.1 Penn Treebank part-of-speech tags (including punctuation).

Figure: Source: https://web.stanford.edu/~jurafsky/slp3/8.pdf

Motivation

1	(Organization) Moody's Investors Service Inc said it lowered the debt and preferred stock ratings of USX Corp and its units.
2	[Number] About seven billion dlrs of securities is affected.
3	Org Crganization [Number] Moody's said Marathon Oil Co's recent establishment of up to one billion dirs in production payment facilities on its
	prolific Yates Field has significant negative implications for USX's unsecured creditors.
4	The company appears to have positioned its steel segment for a return to profit by late 1987, Moody's added.
5	Ratings lowered include those on USX's senior debt to BA-1 from BAA-3.

Figure: Named entity annotation for a text from the Reuters21578 corpus.

Motivation

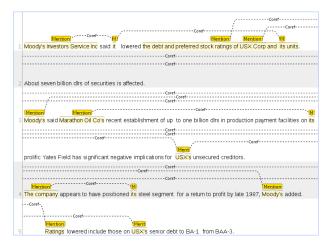


Figure: Coreference annotations for a text from the Reuters21578 corpus.

NLP tools available in R

Software	Prog. lang.	Languages	R-wrapper
Stanford CoreNLP	Java	ar, de, en,	StanfordCoreNL
		es, fr, zh	coreNLP
OpenNLP	Java	da, de, en, es,	OpenNLP
		it, nl, pt, sv	
spaCy	Python	de, en, es, fr,	spacyr
		it, nl, pt	
UDPipe	C++	> 50	udpipe
Google API	REST-API	de, en, es, fr, it,	googlenlp
		ja, ko, pt, zh	

Table: NLP resources in R

R-NLP infrastructures

cleanNLP (Arnold, 2017)

- Imports + Suggests: dplyr, Matrix, stringi, udpipe, reticulate, rJava, RCurl, ...
- SystemRequirements: Java, Python

NLP (Hornik, 2018a)

- Imports + Suggests: utils
- SystemRequirements:

	cleanNLP	NLP
OpenNLP		\checkmark
spaCy	\checkmark	(√)
Stanford CoreNLP	\checkmark	\checkmark
UDPipe	\checkmark	(√)

NLP with the **StanfordCoreNLP** package

Installation

```
install.packages("NLP")
install.packages("rJava")
install.datacube <- function(pkg) install.packages(pkg,
  repos = "http://datacube.wu.ac.at/", type = "source")</pre>
```

```
install.datacube("StanfordCoreNLP")
install.datacube("StanfordCoreNLPjars") ## en - models
install.datacube("StanfordCoreNLPjars.de") ## de - models
```

Load

```
options(java.parameters = "-Xmx4g")
library("NLP")
library("StanfordCoreNLP")
```

NLP with the **StanfordCoreNLP** package

The following example text contains the first four sentences from an article from telegraph.co.uk.

txt <- "I know words. I have the best words. Donald Trump said one day in his superlative way. Now those words by the new US president have been pulled together as a collection of poetry in Norway."

Annotate

```
pline <- StanfordCoreNLP_Pipeline(
   annotators = c("tokenize", "ssplit", "pos", "lemma",
        "ner", "parse", "sentiment", "dcoref"))</pre>
```

a <- AnnotatedPlainTextDocument(txt, annotate(txt, pline))</pre>

Tokenization & Sentence splitting

Word tokens

words(a)[1:10]

[1] "I" "know" "words" "." "I" "have" ## [7] "the" "best" "words" "."

Sentences

sents(a)[1:2]
[[1]]
[1] "I" "know" "words" "."
##
##
[[2]]
[1] "I" "have" "the" "best" "words" "."

Part-of-speech tagging is the task of assigning the correct part of speech tag (noun, verb, etc.) to words.

Part-of-speech tagging is the task of assigning the correct part of speech tag (noun, verb, etc.) to words.

- accuracy token level is around 97%
- accuracy sentence level is around 57%

Part-of-speech (POS) tagging

Part-of-speech tagging is the task of assigning the correct part of speech tag (noun, verb, etc.) to words.

Part of speech tags

```
tagged_words(a)[1:10]
## I/PRP
## know/VBP
## words/NNS
## ./.
## I/PRP
## have/VBP
## the/DT
## best/JJS
## words/NNS
## ./.
```

Lemmatization

Lemmas

```
lem <- features(a, "word")$lemma</pre>
cbind(words = words(a), lemmas = lem)[12:20,]
## words
                      lemmas
## [1,] "Trump"
                      "Trump"
## [2,] "said"
                       "say"
                      "one"
## [3,] "one"
## [4,] "day"
                       "day"
## [5,] "in"
                       "in"
##
   [6,] "his"
                      "he"
## [7,] "superlative" "superlative"
## [8,] "way"
                      "way"
## [9,] "."
                       .....
```

Named entity recognition

- proper name: PERSON, LOCATION, ORGANIZATION, MISC
- numerical: MONEY, NUMBER, ORDINAL, PERCENT
- **temporal:** DATE, TIME, DURATION

Named entity recognition

Named entities

	id	words	ner
[1,]	"11"	"Donald"	"PERSON"
[2,]	"12"	"Trump"	"PERSON"
[3,]	"14"	"one"	"DURATION"
[4,]	"15"	"day"	"DURATION"
[5,]	"21"	"Now"	"DATE"
[6,]	"27"	"US"	"COUNTRY"
[7,]	"28"	"president"	"TITLE"
[8,]	"39"	"Norway"	"COUNTRY"
	[2,] [3,] [4,] [5,] [6,] [7,]	[1,] "11" [2,] "12" [3,] "14" [4,] "15" [5,] "21" [6,] "27" [7,] "28"	<pre>[1,] "11" "Donald" [2,] "12" "Trump" [3,] "14" "one" [4,] "15" "day" [5,] "21" "Now" [6,] "27" "US" [7,] "28" "president"</pre>

Syntactic parsing (phrase structure grammar)

Parse trees (Syntax trees) are used to analyze (represent) the structure of a sentence.

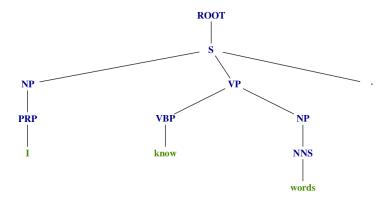


Figure: I know words.

Syntactic parsing (phrase structure grammar)

Parse

```
parsed_sents(a)[[1L]]
## (ROOT
## (S
## (NP (PRP I))
## (VP (VBP know) (NP (NNS words)))
## (..)))
```

Dependency Parsing

- Dependency structure shows which words depend on (modify or are arguments of) which other words.
- Is used to analyze the relation between a word and its dependents.

Dependency Parsing

Basic dependencies

```
features(a, "sentence")[["basic-dependencies"]][[2]]
```

```
## root(ROOT-0, have-2)
## nsubj(have-2, I-1)
## det(words-5, the-3)
## amod(words-5, best-4)
## dobj(have-2, words-5)
## punct(have-2, .-6)
```

Sentiment analysis

Sentiment

feat	ures(a, "se	<pre>entence")[c("sentiment",</pre>	"sentimentValue")]
##	sentiment	sentimentValue	
## 1	Neutral	2	
## 2	Positive	3	
## 3	Neutral	2	
## 4	Neutral	2	

Coreference resolution

Coreferences

fea	<pre>features(a, "document")\$coreferences[[1L]]</pre>							
##	[[1]]						
##		representative	sentence	start	end	head	text	
##	1	TRUE	4	7	7	7	US	
##	2	FALSE	1	1	1	1	I	
##	3	FALSE	2	1	1	1	I	
##								
##	[[2]]						
##		representative	sentence	start	end	head		text
##	1	TRUE	3	1	2	2	Donald	Trump
##	2	FALSE	3	7	7	7		his

NLP as data preparation step

- Sentence splitting is used to estimate topic models on a sentence level.
- POS-tags are used to identify words to be removed during the data preparation of classification tasks (e.g. topic models).
- Lemmatization and the identification of compounds are used as a data preparation step in classification tasks.
- Named entity recognition is used to extract additional features from text.

- Taylor Arnold. A tidy data model for natural language processing using cleanNLP. The R Journal, 9(2):1-20, 2017. URL https://journal. r-project.org/archive/2017/RJ-2017-035/index.html.
- Kurt Hornik. **NLP**: Natural Language Processing Infrastructure, 2018a. R package version 0.1-11.5.
- Kurt Hornik. StanfordCoreNLP: Stanford CoreNLP Annotation., 2018b. URL https://datacube.wu.ac.at. R package version 0.1-4.2.
- Daniel Jurafsky and James H. Martin. Speech and Language Processing: An Introduction to Natural Language Processing, Computational Linguistics, and Speech Recognition. 3rd ed. draft edition, 2017. URL https://web.stanford.edu/~jurafsky/slp3/ed3book.pdf.
- Christopher D. Manning, Mihai Surdeanu, John Bauer, Jenny Finkel, Steven J. Bethard, and David McClosky. The Stanford CoreNLP natural language processing toolkit. In *Association for Computational Linguistics (ACL) System Demonstrations*, pages 55–60, 2014. URL http://www.aclweb.org/anthology/P/P14/P14-5010.

Pontus Stenetorp, Goran Topić, Sampo Pyysalo, Tomoko Ohta, Jin-Dong Kim, and Jun'ichi Tsujii. Bionlp shared task 2011: Supporting resources. In *Proceedings of BioNLP Shared Task 2011 Workshop*, pages 112–120, Portland, Oregon, USA, June 2011. Association for Computational Linguistics. URL http://www.aclweb.org/anthology/W11-1816.